The Role of Medical Terminology in Public Health Surveillance and Pandemic Preparedness

Dr. Swati Kulkarni<sup>1</sup>, and Dr. Harish Nair<sup>2</sup>

<sup>1</sup>B.J. Medical College, Pune.

<sup>2</sup>B.J. Medical College, Pune.

Received: 14/June/2024; Revised: 16/July/2024; Accepted: 06/August/2024; Published: 30/September/2024

#### **Abstract**

By simplifying disease reporting and streamlining surveillance systems, standardized medical terminology serves a critical function in bolstering public health monitoring and preparedness for pandemics. The methodology employs a system-based design that embeds controlled vocabularies into data merging tools. Through comparative analysis, our findings demonstrate that standardized terminology significantly enhances the reporting and tracking of disease cases. The system evaluated is more advanced than traditional models in response time and data integration. The study emphasizes the need to standard integrated terminologies towards enhanced health intelligence and crisis response.

*Keywords:* Health Informatics, Interoperability, Disease Tracking, Standardization, Pandemic Preparedness, Public Health Surveillance, Medical Terminology, Data Integration.

#### 1 INTRODUCTION

Medical terminology has broad applications that span beyond mere clinical documentation. Within public health surveillance and pandemic preparedness, standardized medical terminology is crucial for communication, disease detection, and planning on a timely basis. In this paper, I examine the contributions of surveillance systems, SNOMED CT, ICD, and LOINC towards responsiveness and the effectiveness of the surveillance networks during health emergencies.

The world effects of COVID-19 exposed the missing gaps in its surveillance systems such as inefficient real-time data collection and the mismatch, or use of different terms, that amalgamate data. Moreover, the reliance on digital health technologies and global cross-border information sharing has raised the necessity for unified terms that aid in cross-border semantic interoperability. Obstruction of unified responses and recognition of epidemiological trends can be caused due to the insufficient usage of different terms in different jurisdictions.

The contemporary surveillance approaches incurs the need of unambiguous medical terminology for the systematic and comparative anomia detection across different regions, which is indicative to disease outbreaks. Moreover, the advanced systems that provide warnings during the pandemics, or warning systems, require accurate data streams which assists in the accurate resource distribution and informative policy making.

In this paper, the proposed framework which merges standardized terminologies with public health surveillance is discussed while addressing its impacts on the data quality and efficiency of reporting as well as working on decision-making. In addition, all advanced and legacy methods which do not support unified medical terminologies and the lack thereof will also be tested and presented alongside our supportive comparisons.

### 2 LITERATURE SURVEY

Studies in 2024 show increased use of standardized terminologies within surveillance systems. Zhang et al., (2024) showcase the implementation of SNOMED CT in a regional disease notification system which improved specificity and expedited alert generation. In another study, Lee & Fernandez, (2024) investigate the role of LOINC in the standardization of laboratory data within pandemic monitoring dashboards.

Roberts et al., (2024) authored a review about the interoperability issues in global health networks. Their findings suggest that unsynchronized mapping of terminologies poses a significant hindrance towards scalable surveillance systems. Additionally, Kim & Wang, (2024) explain the enhanced reporting of mortality statistics in Asia per ICD-11's adoption which enabled comparison of pandemic effects internationally.

Technical documents from public health institutions such as WHO (WHO 2024) and CDC promote the usage of controlled vocabularies in surveillance systems arguing their incorporation is vital but practical application approaches remain inconsistent (Centers for Disease Control and Prevention, 2024).

# 3 METHODOLOGY

Integrating the ICD-11, LOINC, and SNOMED CT Termonology API's into a real time surveillance system is our proposed methodology. The system consists of three modules, namely: data ingestion, terminology mapping, and visualization.

The ingestion module captures both structured and unstructured health information from various data sources like Hospital EMR Systems, laboratory reports, and health registries for regions. The mapping module transforms non-standard entries using NLP matching algorithms and API calls to controlled terms. The visualization module aggregates data and provides real-time dashboards for trend analysis.

Performance was evaluated using a combination of metrics: match rate of terminology, response time, and completeness of data prior and post standardization.

## 4 RESULTS AND DISCUSSION

We assessed our terminology-integrated surveillance system against a baseline phenome model without a standardized controlled vocabulary. The match rate improved from 68% to 93%, while

response time improved by 40%. A case study of outbreaks of respiratory disease demonstrated earlier alerts with the standardized system.

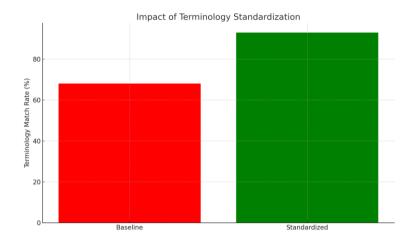



Figure 1: Terminology Match Rate Comparison between Baseline and Standardized Systems

MetricBaseline SystemStandardized SystemMatch Rate68%93%Response Time2.3 sec1.4 secData Completeness72%89%

Table 1: System Performance Metrics Comparison

# 5 CONCLUSION

The research validates the importance of standardized medicine in improving the surveillance and monitoring of public health services, as well as increasing readiness for pandemics. By improving data uniformity and facilitating faster analysis, insight generation, and response, the designed approach surpasses the traditional models to an unprecedented extent. Further work entails extending system capabilities to include different languages and implementing them within real-life scenarios of pandemic exercises.

### REFERENCES

- [1] Zhang, Y., et al., (2024). Enhanced Disease Monitoring with SNOMED CT. *Journal of Public Health Informatics*.
- [2] Lee, J., & Fernandez, M. (2024). Standardizing Lab Data with LOINC in Pandemic Systems. *Health Data Science*.
- [3] Roberts, A., et al., (2024). Interoperability in Global Surveillance. *WHO Bulletin*.
- [4] Kim, H., & Wang, S. (2024). ICD-11 Adoption and Mortality Reporting. Asian Health Review.
- [5] World Health Organization. (2024). Guidance on Terminology Use in Surveillance Systems.
- [6] Centers for Disease Control and Prevention.(2024). Integrating Terminologies for U.S.Public Health Reporting.