# Impact of Terminology Standardization on Diagnostic Consistency in Multicenter Studies

Dr. Maria Gonzalez<sup>1</sup>, and Dr. Ahmed El-Sayed<sup>2</sup>

Received: 08/January/2024; Revised: 22/January/2024; Accepted: 09/February/2024; Published: 29/March/2024

#### Abstract

This examination looks into the effect of terminology standardization on achieving consistency in diagnosis using multicenter studies. Within the comparative framework of structured and unstructured clinical datasets from various institutions, we applied a terminology normalization process using SNOMED CT and LOINC Interfaces. The outcome demonstrated improved alignment in case diagnoses and consistency in the medical interpretation gaps. The findings justify the use multicenter clinical research and clinical-grade global health data toward the refinement of health data integration by relaying evidence on the reproducibility and decision intricacies from controlled standardized terminological frameworks within multidisciplinary clinical research.

*Keywords:* Standardized Nomenclature, Multicentre Studies, SNOMED CT, SNOOS and other Multi-center Research, Automated Diagnosis Systems, Clinical Research Interoperability.

#### 1 INTRODUCTION

Obtaining data from patients across different demographic settings enhances the effectiveness of clinical research. Despite this significant advantage, multicentre studies face a challenge in terms of uniformity regarding clinical terms and classifications used in different centers. In order to address this challenge of comparability, terminology unification has been proposed using coding standards like SNOMED CT and LOINC across institution blocks. Disease aggregation discrepancies categorize underuse of vasts statistical data; suppressed by severely constricted power yielding unreliable results. This paper describes the increased reliability of multicenter research with the use of standardized terminologies. This relative improve diagnostic accuracy along with sharp decrease in interpretive inconsistencies guarantee effectiveness of multicentric studies. These effects are evaluated using empirical evidence and viewed within the lens of systeo-educational structure model.

### 2 LITERATURE REVIEW

More recent studies have emphasized the need for the unification of terminologies in clinical informatics. A research conducted by (Zhang et al., 2024) documented the use of SNOMED CT in four hospitals and realized it expanded the interoperability of data and enhanced coding accuracy. In a like manner, Gupta & Ramirez, (2024) showed that the incorporation of LOINC into laboratory-information systems improved redundancy and overall comparability of test results. Other important work includes

<sup>&</sup>lt;sup>1</sup>University of Barcelona, Spain.

<sup>&</sup>lt;sup>2</sup>University of Barcelona, Spain.

(Thompson et al., 2023), who showed that the use of unifying terminological frameworks resulted in improved concordance of diagnoses by 20%. These studies illustrate the ease and efficacy of standardization in particular clinical settings which underlines the importance of such measures in multicenter, large-scale settings (Lee & Wang, 2024; Nguyen, 2023; Patel & Chen, 2024).

#### 3 METHODOLOGY

Our approach is defined by a distinct three tier system design that focuses on increasing the interoperability and consistency of the diagnostic data within and among systems using different Electronic Health Record (EHR) systems.

#### Phase 1: Data Extraction and Integration

In the first step, diagnostic data from three different academic medical centers using different EHR systems were pandemically located across the world. Extracted data sources included both structured diagnostic codes and unstructured clinical notes. All of the records extracted were de-identified and contained proprietary information and were therefore standardized into a common data model (CDM) format. This model enabled cross-institutional processing and comparison of data. Special consideration was given to changes in coding rules and language. These changes underwent a stringent standardization process, which needed to happen in the subsequent steps.

#### Phase 2: Alignment of Concepts Mapping and Terminology Integration

The second phase focused on constructing and implementing a diagnostic terminology mapping engine. This achieved integration of SNOMED CT and LOINC through the use of UMLS as a mapping ontology. The mapping engine utilized UMLS Metathesaurus relationships to map concepts and resolve conflicts between different coding families. Structured codes were also normalized according to a translation algorithm framework that dealt with synonymo, hierarchal mappings, and context disambiguation. At the same time, clinical notes that were in free form text were processed with NLP techniques such as NER, syntactic analysis, and negation detection to capture and align important diagnostic concepts into standardized ontologies.

#### Phase 3: Evaluation of Diagnosic Standardization

The last phase included an all-encompassing assessment of diagnostic interoperability as well as consistency improvement from the mapping of terminologies. Inter-institutional diagnostic agreement was computed using Cohen's kappa coefficient, measuring agreement levels both before and after standardization. This statistical computation provided us with understanding on how well our harmonization of terminology helped the variation and improvement of semantic interoperability's usabilility. Furthermore, a panel of domain experts blind reviewed a stratified random sample of diagnostic records from all three centers. The panel provided qualitative validation to the quantitative kappa analysis evaluating relevance, coding accuracy, and consistency. Differences in interpretation or alignment were analyzed to improve the maping engines and NLP components.

## 4 RESULT AND DISCUSSION



Figure 1: Comparison Graph of Diagnostic Consistency

Table 1: Diagnostic Agreement Rates Across Centers

| Center   | Cases Evaluated | Agreement Before (%) | Agreement After (%) |
|----------|-----------------|----------------------|---------------------|
| Center A | 500             | 72                   | 88                  |
| Center B | 450             | 69                   | 85                  |
| Center C | 530             | 66                   | 82                  |

The findings show that diagnostic agreement across centers improved after the standardization of the methodologies. Kappa coefficient increased from 0.68 to 0.85 indicating a movement from moderate to nearly perfect agreement. This illustrates the effectiveness of the system in resolving semantic gaps. The automated system outperformed the previous manual attempts at harmonization by 30% in speed and less reliance on the expert's input. These results are consistent with the existing literature which proves that standardized nomenclature is vital for multicenter studies.

#### 5 CONCLUSION

The consistency of diagnoses in multicenter studies is improved by the standardization of medical terminology. Our system showed marked improvement in agreement rates and reduced variability between institutions. Increased use of terminology such as SNOMED CT and LOINC is encouraged based on these results. Work in the future will aim at a greater level of integration with Artificial Intelligence for the purpose of dynamic cross-specialty and cross-language changeable terminology adaption.

#### REFERENCES

- [1] Zhang, L., et al., (2024). Enhancing EHR Interoperability through SNOMED CT Alignment. Journal of Biomedical Informatics.
- [2] Gupta, A., & Ramirez, M. (2024). Leveraging LOINC for Laboratory Test Standardization. *International Journal of Medical Informatics*.
- [3] Thompson, K., et al., (2023). Impact of Terminology Integration on Diagnostic

- Reliability. BMC Medical Research Methodology.
- [4] Lee, D., & Wang, H. (2024). Standardized Coding in Multicenter Clinical Trials. *Journal of Clinical Informatics*.
- [5] Nguyen, T. (2023). The Role of UMLS in Harmonizing Clinical Language. Health Information Science and Systems.
- [6] Patel, R., & Chen, J. (2024). Inter-rater Reliability Improvement via Terminology Mapping. JMIR Medical Informatics.